آنالیزِ تست Analyzetest

تجزیه و تحلیل آزمون های آزمایشگاهی رشته های دانشگاهی

آنالیزِ تست Analyzetest

تجزیه و تحلیل آزمون های آزمایشگاهی رشته های دانشگاهی






آنالیزِ تست Analyzetest
جهت تحلیل و آنالیز نتایج آزمون های آزمایشگاهی:
TGA
XRD
FTIR
Raman
UV-Vis
EIS
Polarization
Noise
XPS
SEM & TEM
EDS
Ellipsometry
Electroluminescence (EL) spectroscopy
photoluminescence (PL) spectroscopy
NMR
contact angle
DMA

با شماره تماس 09132050479 (جاوید) تماس حاصل نموده و یا از طریق تلگرام پیام ارسال فرمایید. همچنین می توانید به آدرس زیر ایمیل ارسال فرمایید:
javidparvar@gmail.com
در صورتی که در تحلیل یکی از آزمون های آزمایشگاهی تجربه و تبحر دارید با همین راه های ارتباطی و یا از قسمت استخدام آنالیزگر رزومه خود را ارسال فرمایید.
بایگانی

۸ مطلب با کلمه‌ی کلیدی «تست» ثبت شده است

روش های حساس به سطح، روش هایی هستند که به کمک آن ها می توان آنالیز شیمیایی را در سطح نمونه انجام داد. منظور از آنالیز سطح، تعیین ترکیب شیمیایی سطح نمونه و حداکثر تا عمق ۲۰ لایه اتمی (۵۰ انگستروم) می باشد. اساس همه روشهای آنالیز سطح، برانگیختن سطح نمونه به کمک یک پرتوی فوتونی یا ذرهای و اندازه گیری انرژی ذرات ثانویه ای است که سطح نمونه را ترک می کنند. منظور از ذرات ثانویه، الکترونها یا یون هایی هستند که در اثر بمباران پرتو ابتدایی از سطح نمونه جداشده می توان آنها را در خارج از سطح، آزمایش کرد. روش های اصلی حساس به سطح که در علم مواد بیشتر استفاده می شوند عبارتند از طیف سنجی فوتوالکترون پرتو ایکس (XPS)، طیف سنجی الکترون اوژه (AES و طیف سنجی جرمی یون ثانویه (SIMS). در این روشها، تنها ذرات ثانویه ای که در نزدیکی سطح پدید می آیند، شانس فرار از سطح و ورود به آنالیز کننده را دارند. ذرات ثانویه پدید آمده در عمق نمونه، به دلیل احتمال برهم کنش با اتم های داخل نمونه، در عمل از بین می روند. بنابراین، اطلاعاتی که از این ذرات خروجی از سطح نمونه به دست می آید محدود به ۲۰ لایه اتمی سطحی بوده و براین اساس، روش های بالا را روش های حساس به سطح نامیده اند. اهمیت روشهای آنالیز سطح در این واقعیت نهفته است که در بسیاری از مطالعاتی که در علم مواد انجام می شود، اطلاعات موجود در سطح ماده حیاتی است. به عنوان مثال در واکنش های یک ماده جامد با یک گاز یا یک مایع، ترکیب های اصلی در سطح نمونه به وجود می آیند و همچنین به پدیده خوردگی مواد که واکنش های اصلی آن در سطح قطعه پدید می آیند، می توان اشاره کرد[۱].

بیضی‌سنجی یک روش توانمند و غیرمخرب برای آنالیز لایه‌های بسیار نازک است. این روش قادر به اندازه‌گیری ضریب شکست، ضریب جذب و ضخامت لایه‌های نازک است. این وسیله بر مبنای این واقعیت ساخته شده‌است که بازتاب از یک فصل مشترک (سطح) دی‌الکتریک می‌تواند قطبش و فاز موج ورودی را تغییر دهد. این تغییرات به ضریب شکست ماده بستگی دارد. این روش می‌تواند خواص مختلفی از قبیل ضخامت، خواص نوری، مورفولوژی و حتی ترکیبات شیمیایی لایه را نیز مشخص کند. همچنین بیضی‌سنجی می‌تواند برای اندازه‌گیری ضخامت لایه‌هایی با ضخامت نانومتری که روی زیرلایه‌های مختلف قرار دارند، استفاده شود. حتی به کمک این روش می‌توان چندلایه‌ها (Multilayer) را نیز بررسی و مطالعه نمود.

نام "بیضی‌سنجی" ازاین واقعیت که بیشتر حالت‌های عمومی قطبش بیضوی‌اند گرفته شده‌است. حدود یک قرن از شناخت این روش می‌گذرد و امروزه کاربردهای استاندارد زیادی پیدا کرده است. البته بیضی‌نگاری در حوزه‌های پژوهش دیگر، از قبیل زیست شناسی و پزشکی نیز روز به روز بیشتر مورد توجه قرار می‌گیرد

filereader.php?p1=main_ec6ef230f1828039e

جذب (Absorbance) فرآیندی است که در آن یک ماده به طور گزینشی، انرژی فرکانس های خاصی از تابش الکترومغناطیسی را جذب نموده و در نتیجه پرتو تابشی اولیه را تضعیف می کند. طیف سنجی فرابنفش و مرئی، جذب تابش الکترومغناطیسی توسط ماده در ناحیه فرابنفش / مرئی است. مولکول های آلی، گونه های معدنی و کمپلکس های انتقال بار سه دسته مهم از جاذب ها در طیف سنجی فرابنفش و مرئی هستند. مهمترین انتقالات ترکیبات آلی مربوط به دو انتقال n بهو π به *π  است. الکترون های مسئول جذب در گونه های معدنی در اوربیتال های d و f قرار دارند و جذب انتقال بار در کمپلکس ها نیز محصول یک نوع فرآیند اکسایش/کاهش درونی است. ممکن است تمام انرژی یک فرکانس از تابش توسط ماده جذب نشود. عبور (transmittance) مقیاسی از کمیّت نور جذب نشده است. جذب نیز یک کمیّت بدون واحد است که با غلظت رابطه مستقیم دارد. قانون بیر-لامبرت (Beer-Lambert) رابطه ی بین جذب و غلظت را بیان می کند. یکی از عواملی که بر طیف های جذبی اثر می گذارد قطبیّت حلال است که بر حسب نوع انتقال می تواند باعث ایجاد انتقال در فرکانس نور قابل جذب (انتقال قرمز به سمت فرکانس های کمتر یا آبی به سمت فرکانس های بیشتر شود.

filereader.php?p1=main_b7ba4fa86f350473e

با توجه به گوناگونی مفاهیم مرتبط با رفتار بین نمونه و الکترون، تکنیک های متعددی مرتبط با کار میکروسکوپ الکترونی عبوری وجود دارد. بر این اساس و جهت تصویرسازی در TEM، در ابتدا یک الگو با استفاده از پرتوهای عبوری و یا پراکنده شده، که با استفاده از دریچه‌ها انتخاب می‌شوند، تهیه شده و سپس تحت تاثیر عدسی های مناسب به منظور به دست آوردن تصویری با کنتراست بالا قرار می‌گیرد. این فرایند انتخاب پرتو، تکنیک هایی مانند اندازه گیری های میدان روشن و میدان تاریک و تصویربرداری با رزلوشن بالا (HR-TEM) را از یکدیگر تفکیک می کند. در این بین پراش الکترون یکی از مهمترین پدیده های است که در میکروسکوپ‌های الکترونی عبوری و در هنگام بررسی نمونه های بلوری اتفاق می‌افتد، که با بررسی آن طیف وسیعی از داده ها در مورد ویژگی های ساختاری مواد نشان داده خواهد شد.

فرایند جذب مادون قرمز:

تقریبا تمامی ترکیباتی که پیوند کوالانسی دارند، اعم از آلی یا معدنی ، فرکانسهای متفاوتی از اشعه الکترومغناطیسی را در ناحیه مادون قرمز طیف ، جذب میکنند.

مانند انواع دیگر جذب انرژی ، موقعی که مولکولها ، اشعه مادون قرمز را جذب میکنند، به حالت انرژی بالاتر برانگیخته میگردند. جذب تابش مادون قرمز مانند هر فرآیند جذب دیگر ، یک فرآیند کوانتایی است، بدین صورت که فقط فرکانسهایی مشخص از تابش مادون قرمز توسط مولکول جذب میگردد. جذب تابش مادون قرمز با تغییر انرژی بین (KJ/mol (8-40 همراه است.

تاریخچه:

در سال 1887 اثر فوتوالکتریک  توسط هانریش هرتز کشف شد،در سال 1905

اینشتین این مسئله را با استفاده از فیزیک کوانتم توضیح داد و جایزه نوبل 1921

را از آن خود کرد. در 1907 فردی به نام P.D.Innes با استفاده از لامپ کاتدیسیم پیچ هلمهلتز و میدان مغناطیسی نیمکره ای و فیلم عکاسی(برای ثبت اثر الکترونهای ساطع شده)  آزمایشی انجام داد که نتیجه آن ثبت اولین طیف سنجیXPS بود.

عوامل مؤثر بر شدت پیک:


از عواملی که بر شدت پیک ها در الگوهای پراش تأثیر گذار هستند می توان به موارد زیر اشاره کرد:


1- ماهیت نمونه مورد آزمون (تک فازی یا چند فازی بودن نمونه) بدین صورت که هرچقدر تعداد فازهای موجود در نمونه زیاد شود، از ماکسیمم شدت پیک الگوی پراش کاسته می شود. (به دلیل اثر گذاری فاکتور مقیاس است که در آینده توضیح داده خواهد شد.)

  • پراش پرتو ایکس (XRD) :

    ·         XRD یا همان پراش اشعه ایکس (X-RAY DIFFRACTION) تکنیکی قدیمی و پرکابرد در بررسی خصوصیات کریستال‌ها می‌باشد. در این روش از پراش اشعه ایکس توسط نمونه جهت بررسی ویژگی های نمونه استفاده می شود. XRD برای تعیین عموم کمیات ساختار کریستالی از قبیل ثابت شبکه، هندسه شبکه، تعیین کیفی مواد ناشناس، تعیین فاز کریستال‌ها، تعیین اندازه کریستا‌ل‌ها، جهت گیری تک کریستال، استرس، تنش، عیوب شبکه وغیره، قابل استفاده می‌باشددر این مقاله ابتدا با اساس کار XRD و سپس با اجزا XRD آشنا خواهیم شد.